Denoising based on time-shift PCA.
نویسندگان
چکیده
We present an algorithm for removing environmental noise from neurophysiological recordings such as magnetoencephalography (MEG). Noise fields measured by reference magnetometers are optimally filtered and subtracted from brain channels. The filters (one per reference/brain sensor pair) are obtained by delaying the reference signals, orthogonalizing them to obtain a basis, projecting the brain sensors onto the noise-derived basis, and removing the projections to obtain clean data. Simulations with synthetic data suggest that distortion of brain signals is minimal. The method surpasses previous methods by synthesizing, for each reference/brain sensor pair, a filter that compensates for convolutive mismatches between sensors. The method enhances the value of data recorded in health and scientific applications by suppressing harmful noise, and reduces the need for deleterious spatial or spectral filtering. It should be applicable to a wider range of physiological recording techniques, such as EEG, local field potentials, etc.
منابع مشابه
Two-stage image denoising by principal component analysis with local pixel grouping
This paper presents an efficient image denoising scheme by using principal component analysis (PCA) with local pixel grouping (LPG). For a better preservation of image local structures, a pixel and its nearest neighbors are modeled as a vector variable, whose training samples are selected from the local window by using block matching based LPG. Such an LPG procedure guarantees that only the sam...
متن کاملA Bayesian approach for image denoising in MRI
Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that is based on Nuclear Magnetic Resonance (NMR). MRI is a safe imaging method with high contrast between soft tissues, which made it the most popular imaging technique in clinical applications. MR Imagechr('39')s visual quality plays a vital role in medical diagnostics that can be severely corrupted by existing noise duri...
متن کاملImage denoising with patch based PCA: local versus global
In recent years, overcomplete dictionaries combined with sparse learning techniques became extremely popular in computer vision. While their usefulness is undeniable, the improvement they provide in specific tasks of computer vision is still poorly understood. The aim of the present work is to demonstrate that for the task of image denoising, nearly state-of-the-art results can be achieved usin...
متن کاملPCA-based denoising method for division of focal plane polarimeters.
Division of focal plane (DoFP) polarimeters are composed of interlaced linear polarizers overlaid upon a focal plane array sensor. The interpolation is essential to reconstruct polarization information. However, current interpolation methods are based on the unrealistic assumption of noise-free images. Thus, it is advantageous to carry out denoising before interpolation. In this paper, we propo...
متن کاملBM3D-Based Denoising of CFA Images for Single-Sensor Digital Cameras
Most existing Digital Color Cameras use a Single -sensor with a color filter array (CFA) to capture images. The quality of demosaicked images is degraded due to the sensor noise introduced during the image acquisition process. The conventional solution to combating CFA sensor noise is demosaicking first, followed by a separate denoising processing. This strategy will generate many noise-caused ...
متن کاملA Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience methods
دوره 165 2 شماره
صفحات -
تاریخ انتشار 2007